Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Semi-Supervised Learning for Predicting Metamorphic Relations (1802.07324v1)

Published 20 Feb 2018 in cs.SE

Abstract: Software testing is difficult to automate, especially in programs which have no oracle, or method of determining which output is correct. Metamorphic testing is a solution this problem. Metamorphic testing uses metamorphic relations to define test cases and expected outputs. A large amount of time is needed for a domain expert to determine which metamorphic relations can be used to test a given program. Metamorphic relation prediction removes this need for such an expert. We propose a method using semi-supervised machine learning to detect which metamorphic relations are applicable to a given code base. We compare this semi-supervised model with a supervised model, and show that the addition of unlabeled data improves the classification accuracy of the MR prediction model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bonnie Hardin (1 paper)
  2. Upulee Kanewala (15 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.