Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elementary Proofs of Some Stirling Bounds (1802.07046v2)

Published 20 Feb 2018 in math.FA and cs.CC

Abstract: We give elementary proofs of several Stirling's precise bounds. We first improve all the precise bounds from the literature and give new precise bounds. In particular, we show that for all $n\ge 8$ $$\sqrt{2\pi n}\left(\frac{n}{e}\right)n e{\frac{1}{12n}-\frac{1}{360n3+103n}} \ge n!\ge \sqrt{2\pi n}\left(\frac{n}{e}\right)n e{\frac{1}{12n}-\frac{1}{360n3+102n}}$$ and for all $n\ge 3$ $$\sqrt{2\pi n}\left(\frac{n}{e}\right)n e{\frac{1}{12n+\frac{2}{5n}-\frac{1.1}{10n3}}} \ge n!\ge \sqrt{2\pi n}\left(\frac{n}{e}\right)n e{\frac{1}{12n+\frac{2}{5n}-\frac{0.9}{10n3}}}.$$

Citations (1)

Summary

We haven't generated a summary for this paper yet.