Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gorenstein flat modules with respect to duality pairs (1802.05197v1)

Published 14 Feb 2018 in math.RT

Abstract: Let $\mathcal{X}$ be a class of left $R$-modules, $\mathcal{Y}$ be a class of right $R$-modules. In this paper, we introduce and study Gorenstein $(\mathcal{X}, \mathcal{Y})$-flat modules as a common generalization of some known modules such as Gorenstein flat modules \cite{EJT93}, Gorenstein $n$-flat modules \cite{SUU14}, Gorenstein $\mathcal{B}$-flat modules \cite{EIP17}, Gorenstein AC-flat modules \cite{BEI17}, $\Omega$-Gorenstein flat modules \cite{EJ00} and so on. We show that the class of all Gorenstein $(\mathcal{X}, \mathcal{Y})$-flat modules have a strong stability. In particular, when $(\mathcal{X}, \mathcal{Y})$ is a perfect (symmetric) duality pair, we give some functorial descriptions of Gorenstein $(\mathcal{X}, \mathcal{Y})$-flat dimension, and construct a hereditary abelian model structure on $R$-Mod whose cofibrant objects are exactly the Gorenstein $(\mathcal{X}, \mathcal{Y})$-flat modules. These results unify the corresponding results of the aforementioned modules.

Summary

We haven't generated a summary for this paper yet.