Craig Interpolation and Access Interpolation with Clausal First-Order Tableaux (1802.04982v2)
Abstract: We develop foundations for computing Craig interpolants and similar intermediates of two given formulas with first-order theorem provers that construct clausal tableaux. Provers that can be understood in this way include efficient machine-oriented systems based on calculi of two families: goal-oriented like model elimination and the connection method, and bottom-up like the hyper tableau calculus. The presented method for Craig-Lyndon interpolation involves a lifting step where terms are replaced by quantified variables, similar as known for resolution-based interpolation, but applied to a differently characterized ground formula and proven correct more abstractly on the basis of Herbrand's theorem, independently of a particular calculus. Access interpolation is a recent form of interpolation for database query reformulation that applies to first-order formulas with relativized quantifiers and constrains the quantification patterns of predicate occurrences. It has been previously investigated in the framework of Smullyan's non-clausal tableaux. Here, in essence, we simulate these with the more machine-oriented clausal tableaux through structural constraints that can be ensured either directly by bottom-up tableau construction methods or, for closed clausal tableaux constructed with arbitrary calculi, by postprocessing with restructuring transformations.