Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Electric Vehicle Driver Clustering using Statistical Model and Machine Learning (1802.04193v1)

Published 12 Feb 2018 in cs.LG

Abstract: Electric Vehicle (EV) is playing a significant role in the distribution energy management systems since the power consumption level of the EVs is much higher than the other regular home appliances. The randomness of the EV driver behaviors make the optimal charging or discharging scheduling even more difficult due to the uncertain charging session parameters. To minimize the impact of behavioral uncertainties, it is critical to develop effective methods to predict EV load for smart EV energy management. Using the EV smart charging infrastructures on UCLA campus and city of Santa Monica as testbeds, we have collected real-world datasets of EV charging behaviors, based on which we proposed an EV user modeling technique which combines statistical analysis and machine learning approaches. Specifically, unsupervised clustering algorithm, and multilayer perceptron are applied to historical charging record to make the day-ahead EV parking and load prediction. Experimental results with cross-validation show that our model can achieve good performance for charging control scheduling and online EV load forecasting.

Citations (35)

Summary

We haven't generated a summary for this paper yet.