Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
138 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Combinets: Creativity via Recombination of Neural Networks (1802.03605v4)

Published 10 Feb 2018 in cs.LG, cs.CV, and stat.ML

Abstract: One of the defining characteristics of human creativity is the ability to make conceptual leaps, creating something surprising from typical knowledge. In comparison, deep neural networks often struggle to handle cases outside of their training data, which is especially problematic for problems with limited training data. Approaches exist to transfer knowledge from problems with sufficient data to those with insufficient data, but they tend to require additional training or a domain-specific method of transfer. We present a new approach, conceptual expansion, that serves as a general representation for reusing existing trained models to derive new models without backpropagation. We evaluate our approach on few-shot variations of two tasks: image classification and image generation, and outperform standard transfer learning approaches.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.