Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Global Dynamics from Local Snapshots with Deep Generative Neural Networks (1802.03497v5)

Published 10 Feb 2018 in cs.LG and stat.ML

Abstract: Complex high dimensional stochastic dynamic systems arise in many applications in the natural sciences and especially biology. However, while these systems are difficult to describe analytically, "snapshot" measurements that sample the output of the system are often available. In order to model the dynamics of such systems given snapshot data, or local transitions, we present a deep neural network framework we call Dynamics Modeling Network or DyMoN. DyMoN is a neural network framework trained as a deep generative Markov model whose next state is a probability distribution based on the current state. DyMoN is trained using samples of current and next-state pairs, and thus does not require longitudinal measurements. We show the advantage of DyMoN over shallow models such as Kalman filters and hidden Markov models, and other deep models such as recurrent neural networks in its ability to embody the dynamics (which can be studied via perturbation of the neural network) and generate longitudinal hypothetical trajectories. We perform three case studies in which we apply DyMoN to different types of biological systems and extract features of the dynamics in each case by examining the learned model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.