Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-sum Analogues of van der Waerden's Theorem on Arithmetic Progressions (1802.03387v1)

Published 9 Feb 2018 in math.CO

Abstract: Let $r$ and $k$ be positive integers with $r \mid k$. Denote by $w_{\mathrm{\mathfrak{z}}}(k;r)$ the minimum integer such that every coloring $\chi:[1,w_{\mathrm{\mathfrak{z}}}(k;r)] \rightarrow {0,1,\dots,r-1}$ admits a $k$-term arithmetic progression $a,a+d,\dots,a+(k-1)d$ with $\sum_{j=0}{k-1} \chi(a+jd) \equiv 0 \,(\mathrm{mod }\,r)$. We investigate these numbers as well as a "mixed" monochromatic/zero-sum analogue. We also present an interesting reciprocity between the van der Waerden numbers and $w_{\mathrm{\mathfrak{z}}}(k;r)$.

Summary

We haven't generated a summary for this paper yet.