Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Learnability of Generalized Additive Models based on Total Variation Regularization (1802.03001v2)

Published 8 Feb 2018 in stat.ML and cs.LG

Abstract: A generalized additive model (GAM, Hastie and Tibshirani (1987)) is a nonparametric model by the sum of univariate functions with respect to each explanatory variable, i.e., $f({\mathbf x}) = \sum f_j(x_j)$, where $x_j\in\mathbb{R}$ is $j$-th component of a sample ${\mathbf x}\in \mathbb{R}p$. In this paper, we introduce the total variation (TV) of a function as a measure of the complexity of functions in $L1_{\rm c}(\mathbb{R})$-space. Our analysis shows that a GAM based on TV-regularization exhibits a Rademacher complexity of $O(\sqrt{\frac{\log p}{m}})$, which is tight in terms of both $m$ and $p$ in the agnostic case of the classification problem. In result, we obtain generalization error bounds for finite samples according to work by Bartlett and Mandelson (2002).

Citations (3)

Summary

We haven't generated a summary for this paper yet.