Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral State Compression of Markov Processes (1802.02920v3)

Published 8 Feb 2018 in stat.ML, cs.LG, and stat.ME

Abstract: Model reduction of Markov processes is a basic problem in modeling state-transition systems. Motivated by the state aggregation approach rooted in control theory, we study the statistical state compression of a discrete-state Markov chain from empirical trajectories. Through the lens of spectral decomposition, we study the rank and features of Markov processes, as well as properties like representability, aggregability, and lumpability. We develop spectral methods for estimating the transition matrix of a low-rank Markov model, estimating the leading subspace spanned by Markov features, and recovering latent structures like state aggregation and lumpable partition of the state space. We prove statistical upper bounds for the estimation errors and nearly matching minimax lower bounds. Numerical studies are performed on synthetic data and a dataset of New York City taxi trips.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com