Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised word sense disambiguation in dynamic semantic spaces (1802.02605v2)

Published 7 Feb 2018 in cs.CL

Abstract: In this paper, we are mainly concerned with the ability to quickly and automatically distinguish word senses in dynamic semantic spaces in which new terms and new senses appear frequently. Such spaces are built '"on the fly" from constantly evolving data sets such as Wikipedia, repositories of patent grants and applications, or large sets of legal documents for Technology Assisted Review and e-discovery. This immediacy rules out supervision as well as the use of a priori training sets. We show that the various senses of a term can be automatically made apparent with a simple clustering algorithm, each sense being a vector in the semantic space. While we only consider here semantic spaces built by using random vectors, this algorithm should work with any kind of embedding, provided meaningful similarities between terms can be computed and do fulfill at least the two basic conditions that terms which close meanings have high similarities and terms with unrelated meanings have near-zero similarities.

Citations (3)

Summary

We haven't generated a summary for this paper yet.