Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product (1802.02325v2)

Published 7 Feb 2018 in cs.CC and cs.DS

Abstract: In this paper we study the (Bichromatic) Maximum Inner Product Problem (Max-IP), in which we are given sets $A$ and $B$ of vectors, and the goal is to find $a \in A$ and $b \in B$ maximizing inner product $a \cdot b$. Max-IP is very basic and serves as the base problem in the recent breakthrough of [Abboud et al., FOCS 2017] on hardness of approximation for polynomial-time problems. It is also used (implicitly) in the argument for hardness of exact $\ell_2$-Furthest Pair (and other important problems in computational geometry) in poly-log-log dimensions in [Williams, SODA 2018]. We have three main results regarding this problem. First, we study the best multiplicative approximation ratio for Boolean Max-IP in sub-quadratic time. We show that, for Max-IP with two sets of $n$ vectors from ${0,1}{d}$, there is an $n{2 - \Omega(1)}$ time $\left( d/\log n \right){\Omega(1)}$-multiplicative-approximating algorithm, and we show this is conditionally optimal, as such a $\left(d/\log n\right){o(1)}$-approximating algorithm would refute SETH. Second, we achieve a similar characterization for the best additive approximation error to Boolean Max-IP. We show that, for Max-IP with two sets of $n$ vectors from ${0,1}{d}$, there is an $n{2 - \Omega(1)}$ time $\Omega(d)$-additive-approximating algorithm, and this is conditionally optimal, as such an $o(d)$-approximating algorithm would refute SETH [Rubinstein, STOC 2018]. Last, we revisit the hardness of solving Max-IP exactly for vectors with integer entries. We show that, under SETH, for Max-IP with sets of $n$ vectors from $\mathbb{Z}{d}$ for some $d = 2{O(\log{*} n)}$, every exact algorithm requires $n{2 - o(1)}$ time. With the reduction from [Williams, SODA 2018], it follows that $\ell_2$-Furthest Pair and Bichromatic $\ell_2$-Closest Pair in $2{O(\log{*} n)}$ dimensions require $n{2 - o(1)}$ time.

Citations (57)

Summary

We haven't generated a summary for this paper yet.