Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On $q$-analogues of some series for $π$ and $π^2$ (1802.01506v5)

Published 5 Feb 2018 in math.CO and math.NT

Abstract: We obtain a new $q$-analogue of the classical Leibniz series $\sum_{k=0}\infty(-1)k/(2k+1)=\pi/4$, namely \begin{equation*} \sum_{k=0}\infty\frac{(-1)kq{k(k+3)/2}}{1-q{2k+1}}=\frac{(q2;q2){\infty}(q8;q8){\infty}}{(q;q2){\infty}(q4;q8){\infty}}, \end{equation*} where $q$ is a complex number with $|q|<1$. We also show that the Zeilberger-type series $\sum_{k=1}\infty(3k-1)16k/(k\binom{2k}k)3=\pi2/2$ has two $q$-analogues with $|q|<1$, one of which is $$\sum_{n=0}\infty q{n(n+1)/2} \frac {1-q{3n+2}} {1-q} \cdot\frac{(q;q)n3 (-q;q)_n}{(q3;q2){n}3} = (1-q)2 \frac{(q2;q2)4_\infty}{(q;q2)4_\infty}.$$

Summary

We haven't generated a summary for this paper yet.