Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Strong calmness of perturbed KKT system for a class of conic programming with degenerate solutions (1802.01277v1)

Published 5 Feb 2018 in math.OC

Abstract: This paper is concerned with the strong calmness of the KKT solution mapping for a class of canonically perturbed conic programming, which plays a central role in achieving fast convergence under situations when the Lagrange multiplier associated to a solution of these conic optimization problems is not unique. We show that the strong calmness of the KKT solution mapping is equivalent to a local error bound for solutions of perturbed KKT system, and is also equivalent to the pseudo-isolated calmness of the stationary point mapping along with the calmness of the multiplier set map at the corresponding reference point. Sufficient conditions are also provided for the strong calmness by establishing the pseudo-isolated calmness of the stationary point mapping in terms of the noncriticality of the associated multiplier, and the calmness of the multiplier set mapping in terms of a relative interior condition for the multiplier set. These results cover and extend the existing ones in \cite{Hager99,Izmailov12} for nonlinear programming and in \cite{Cui16,Zhang17} for semidefinite programming.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube