Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Satellite Image Scene Classification via ConvNet with Context Aggregation (1802.00631v2)

Published 2 Feb 2018 in eess.IV

Abstract: Scene classification is a fundamental problem to understand the high-resolution remote sensing imagery. Recently, convolutional neural network (ConvNet) has achieved remarkable performance in different tasks, and significant efforts have been made to develop various representations for satellite image scene classification. In this paper, we present a novel representation based on a ConvNet with context aggregation. The proposed two-pathway ResNet (ResNet-TP) architecture adopts the ResNet as backbone, and the two pathways allow the network to model both local details and regional context. The ResNet-TP based representation is generated by global average pooling on the last convolutional layers from both pathways. Experiments on two scene classification datasets, UCM Land Use and NWPU-RESISC45, show that the proposed mechanism achieves promising improvements over state-of-the-art methods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.