Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Satisfiability of Extended Word Equations: The Boundary Between Decidability and Undecidability (1802.00523v1)

Published 2 Feb 2018 in cs.LO and cs.FL

Abstract: The study of word equations (or the existential theory of equations over free monoids) is a central topic in mathematics and theoretical computer science. The problem of deciding whether a given word equation has a solution was shown to be decidable by Makanin in the late 1970s, and since then considerable work has been done on this topic. In recent years, this decidability question has gained critical importance in the context of string SMT solvers for security analysis. Further, many extensions (e.g., quantifier-free word equations with linear arithmetic over the length function) and fragments (e.g., restrictions on the number of variables) of this theory are important from a theoretical point of view, as well as for program analysis applications. Motivated by these considerations, we prove several new results and thus shed light on the boundary between decidability and undecidability for many fragments and extensions of the first order theory of word equations.

Citations (6)

Summary

We haven't generated a summary for this paper yet.