Data driven time scale in Gaussian quasi-likelihood inference (1801.10378v4)
Abstract: We study parametric estimation of ergodic diffusions observed at high frequency. Different from the previous studies, we suppose that sampling stepsize is unknown, thereby making the conventional Gaussian quasi-likelihood not directly applicable. In this situation, we construct estimators of both model parameters and sampling stepsize in a fully explicit way, and prove that they are jointly asymptotically normally distributed. The $L{q}$-boundedness of the obtained estimator is also derived. Further, we propose the Schwarz (BIC) type statistics for model selection and show its model-selection consistency. We conducted some numerical experiments and found that the observed finite-sample performance well supports our theoretical findings. Also provided is a real data example.