Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An application of collapsing levels to the representation theory of affine vertex algebras (1801.09880v3)

Published 30 Jan 2018 in math.RT, math-ph, math.MP, and math.QA

Abstract: We discover a large class of simple affine vertex algebras $V_{k} (\mathfrak g)$, associated to basic Lie superalgebras $\mathfrak g$ at non-admissible collapsing levels $k$, having exactly one irreducible $\mathfrak g$-locally finite module in the category ${\mathcal O}$. In the case when $\mathfrak g$ is a Lie algebra, we prove a complete reducibility result for $V_k(\mathfrak g)$-modules at an arbitrary collapsing level. We also determine the generators of the maximal ideal in the universal affine vertex algebra $Vk (\mathfrak g)$ at certain negative integer levels. Considering some conformal embeddings in the simple affine vertex algebras $V_{-1/2} (C_n)$ and $V_{-4}(E_7)$, we surprisingly obtain the realization of non-simple affine vertex algebras of types $B$ and $D$ having exactly one non-trivial ideal.

Summary

We haven't generated a summary for this paper yet.