Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing Binary Quadratic Forms for More Scalable Quantum Annealing (1801.08652v2)

Published 26 Jan 2018 in quant-ph and cs.DS

Abstract: Recent advances in the development of commercial quantum annealers such as the D-Wave 2X allow solving NP-hard optimization problems that can be expressed as quadratic unconstrained binary programs. However, the relatively small number of available qubits (around 1000 for the D-Wave 2X quantum annealer) poses a severe limitation to the range of problems that can be solved. This paper explores the suitability of preprocessing methods for reducing the sizes of the input programs and thereby the number of qubits required for their solution on quantum computers. Such methods allow us to determine the value of certain variables that hold in either any optimal solution (called strong persistencies) or in at least one optimal solution (weak persistencies). We investigate preprocessing methods for two important NP-hard graph problems, the computation of a maximum clique and a maximum cut in a graph. We show that the identification of strong and weak persistencies for those two optimization problems is very instance-specific, but can lead to substantial reductions in the number of variables.

Citations (11)

Summary

We haven't generated a summary for this paper yet.