Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eight Years of Rider Measurement in the Android Malware Ecosystem: Evolution and Lessons Learned (1801.08115v2)

Published 24 Jan 2018 in cs.CR

Abstract: Despite the growing threat posed by Android malware, the research community is still lacking a comprehensive view of common behaviors and trends exposed by malware families active on the platform. Without such view, the researchers incur the risk of developing systems that only detect outdated threats, missing the most recent ones. In this paper, we conduct the largest measurement of Android malware behavior to date, analyzing over 1.2 million malware samples that belong to 1.2K families over a period of eight years (from 2010 to 2017). We aim at understanding how the behavior of Android malware has evolved over time, focusing on repackaging malware. In this type of threats different innocuous apps are piggybacked with a malicious payload (rider), allowing inexpensive malware manufacturing. One of the main challenges posed when studying repackaged malware is slicing the app to split benign components apart from the malicious ones. To address this problem, we use differential analysis to isolate software components that are irrelevant to the campaign and study the behavior of malicious riders alone. Our analysis framework relies on collective repositories and recent advances on the systematization of intelligence extracted from multiple anti-virus vendors. We find that since its infancy in 2010, the Android malware ecosystem has changed significantly, both in the type of malicious activity performed by the malicious samples and in the level of obfuscation used by malware to avoid detection. We then show that our framework can aid analysts who attempt to study unknown malware families. Finally, we discuss what our findings mean for Android malware detection research, highlighting areas that need further attention by the research community.

Citations (59)

Summary

We haven't generated a summary for this paper yet.