Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-parametric Sparse Additive Auto-regressive Network Models (1801.07644v2)

Published 23 Jan 2018 in stat.ML, math.ST, and stat.TH

Abstract: Consider a multi-variate time series $(X_t)_{t=0}{T}$ where $X_t \in \mathbb{R}d$ which may represent spike train responses for multiple neurons in a brain, crime event data across multiple regions, and many others. An important challenge associated with these time series models is to estimate an influence network between the $d$ variables, especially when the number of variables $d$ is large meaning we are in the high-dimensional setting. Prior work has focused on parametric vector auto-regressive models. However, parametric approaches are somewhat restrictive in practice. In this paper, we use the non-parametric sparse additive model (SpAM) framework to address this challenge. Using a combination of $\beta$ and $\phi$-mixing properties of Markov chains and empirical process techniques for reproducing kernel Hilbert spaces (RKHSs), we provide upper bounds on mean-squared error in terms of the sparsity $s$, logarithm of the dimension $\log d$, number of time points $T$, and the smoothness of the RKHSs. Our rates are sharp up to logarithm factors in many cases. We also provide numerical experiments that support our theoretical results and display potential advantages of using our non-parametric SpAM framework for a Chicago crime dataset.

Citations (9)

Summary

We haven't generated a summary for this paper yet.