Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial-Time Random Oracles and Separating Complexity Classes (1801.07317v1)

Published 22 Jan 2018 in cs.CC

Abstract: Bennett and Gill (1981) showed that PA != NPA != coNPA for a random oracle A, with probability 1. We investigate whether this result extends to individual polynomial-time random oracles. We consider two notions of random oracles: p-random oracles in the sense of martingales and resource-bounded measure (Lutz, 1992; Ambos-Spies et al., 1997), and p-betting-game random oracles using the betting games generalization of resource-bounded measure (Buhrman et al., 2000). Every p-betting-game random oracle is also p-random; whether the two notions are equivalent is an open problem. (1) We first show that PA != NPA for every oracle A that is p-betting-game random. Ideally, we would extend (1) to p-random oracles. We show that answering this either way would imply an unrelativized complexity class separation: (2) If PA != NPA relative to every p-random oracle A, then BPP != EXP. (3) If PA = NPA relative to some p-random oracle A, then P != PSPACE. Rossman, Servedio, and Tan (2015) showed that the polynomial-time hierarchy is infinite relative to a random oracle, solving a longstanding open problem. We consider whether we can extend (1) to show that PHA is infinite relative to oracles A that are p-betting-game random. Showing that PHA separates at even its first level would also imply an unrelativized complexity class separation: (4) If NPA != coNPA for a p-betting-game measure 1 class of oracles A, then NP != EXP. (5) If PHA is infinite relative to every p-random oracle A, then PH != EXP.

Summary

We haven't generated a summary for this paper yet.