Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evidential Occupancy Grid Map Augmentation using Deep Learning (1801.05297v3)

Published 16 Jan 2018 in cs.RO

Abstract: A detailed environment representation is a crucial component of automated vehicles. Using single range sensor scans, data is often too sparse and subject to occlusions. Therefore, we present a method to augment occupancy grid maps from single views to be similar to evidential occupancy maps acquired from different views using Deep Learning. To accomplish this, we estimate motion between subsequent range sensor measurements and create an evidential 3D voxel map in an extensive post-processing step. Within this voxel map, we explicitly model uncertainty using evidence theory and create a 2D projection using combination rules. As input for our neural networks, we use a multi-layer grid map consisting of the three features detections, transmissions and intensity, each for ground and non-ground measurements. Finally, we perform a quantitative and qualitative evaluation which shows that different network architectures accurately infer evidential measures in real-time.

Citations (24)

Summary

We haven't generated a summary for this paper yet.