Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Simplicial Approach to Stratified Homotopy Theory

Published 15 Jan 2018 in math.AT | (1801.04797v3)

Abstract: In this article we consider the homotopy theory of stratified spaces through a simplicial point of view. We first consider a model category of filtered simplicial sets over some fixed poset $P$, and show that it is a simplicial combinatorial model category. We then define a generalization of the homotopy groups for any fibrant filtered simplicial set $X$ : the filtered homotopy groups $s\pi_n(X)$. They are diagrams of groups built from the homotopy groups of the different pieces of $X$. We then show that the weak equivalences are exactly the morphisms that induce isomorphisms on those filtered homotopy groups. Then, using filtered versions of the topological realisation of a simplicial set and of the simplicial set of singular simplices, we transfer those results to a category whose objects are topological spaces stratified over $P$. In particular, we get a stratified version of Whitehead's theorem. Specializing to the case of conically stratified spaces, a wide class of topological stratified spaces, we recover a theorem of Miller saying that to understand the homotopy type of conically stratified spaces, one only has to understand the homotopy type of strata and holinks. We then provide a family of examples of conically stratified spaces and of computations of their filtered homotopy groups.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.