Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable De Novo Genome Assembly Using Pregel (1801.04453v1)

Published 13 Jan 2018 in cs.DC

Abstract: De novo genome assembly is the process of stitching short DNA sequences to generate longer DNA sequences, without using any reference sequence for alignment. It enables high-throughput genome sequencing and thus accelerates the discovery of new genomes. In this paper, we present a toolkit, called PPA-assembler, for de novo genome assembly in a distributed setting. The operations in our toolkit provide strong performance guarantees, and can be assembled to implement various sequencing strategies. PPA-assembler adopts the popular {\em de Bruijn graph} based approach for sequencing, and each operation is implemented as a program in Google's Pregel framework for big graph processing. Experiments on large real and simulated datasets demonstrate that PPA-assembler is much more efficient than the state-of-the-arts and provides good sequencing quality.

Citations (6)

Summary

We haven't generated a summary for this paper yet.