Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zeta-regularization and the heat-trace on some compact quantum semigroups (1801.03982v2)

Published 11 Jan 2018 in math.OA, math-ph, math.FA, math.MP, and math.QA

Abstract: Heat-invariants are a class of spectral invariants of Laplace-type operators on compact Riemannian manifolds that contain information about the geometry of the manifold, e.g., the metric and connection. Since Brownian motion solves the heat equation, these invariants can be obtained studying Brownian motion on manifolds. In this article, we consider Brownian motion on the Toeplitz algebra, discrete Heisenberg group algebras, and non-commutative tori to define Laplace-type operators and heat-semigroups on these C*-bialgebras. We show that their traces can be $\zeta$-regularized and compute "heat-traces" on these algebras, giving us a notion of dimension and volume. Furthermore, we consider $SU_q(2)$ which does not have a Brownian motion but a class of driftless Gaussians which still recover the dimension of $SU_q(2)$.

Summary

We haven't generated a summary for this paper yet.