Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Informed Group-Sparse Representation for Singing Voice Separation (1801.03815v1)

Published 9 Jan 2018 in eess.AS, cs.IR, cs.SD, eess.SP, and stat.ML

Abstract: Singing voice separation attempts to separate the vocal and instrumental parts of a music recording, which is a fundamental problem in music information retrieval. Recent work on singing voice separation has shown that the low-rank representation and informed separation approaches are both able to improve separation quality. However, low-rank optimizations are computationally inefficient due to the use of singular value decompositions. Therefore, in this paper, we propose a new linear-time algorithm called informed group-sparse representation, and use it to separate the vocals from music using pitch annotations as side information. Experimental results on the iKala dataset confirm the efficacy of our approach, suggesting that the music accompaniment follows a group-sparse structure given a pre-trained instrumental dictionary. We also show how our work can be easily extended to accommodate multiple dictionaries using the DSD100 dataset.

Citations (14)

Summary

We haven't generated a summary for this paper yet.