Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample-Efficient Reinforcement Learning through Transfer and Architectural Priors (1801.02268v1)

Published 7 Jan 2018 in cs.LG and cs.AI

Abstract: Recent work in deep reinforcement learning has allowed algorithms to learn complex tasks such as Atari 2600 games just from the reward provided by the game, but these algorithms presently require millions of training steps in order to learn, making them approximately five orders of magnitude slower than humans. One reason for this is that humans build robust shared representations that are applicable to collections of problems, making it much easier to assimilate new variants. This paper first introduces the idea of automatically-generated game sets to aid in transfer learning research, and then demonstrates the utility of shared representations by showing that models can substantially benefit from the incorporation of relevant architectural priors. This technique affords a remarkable 50x positive transfer on a toy problem-set.

Citations (14)

Summary

We haven't generated a summary for this paper yet.