Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An asymptotic bound for Castelnuovo-Mumford regularity of certain Ext modules over graded complete intersection rings (1801.01864v3)

Published 5 Jan 2018 in math.AC

Abstract: Set $ A := Q/({\bf z}) $, where $ Q $ is a polynomial ring over a field, and $ {\bf z} = z_1,\ldots,z_c $ is a homogeneous $ Q $-regular sequence. Let $ M $ and $ N $ be finitely generated graded $ A $-modules, and $ I $ be a homogeneous ideal of $ A $. We show that (1) $ \mathrm{reg}\left( \mathrm{Ext}_A{i}(M, InN) \right) \le \rho_N(I) \cdot n - f \cdot \left\lfloor \frac{i}{2} \right\rfloor + b \mbox{ for all } i, n \ge 0 $, (2) $ \mathrm{reg}\left( \mathrm{Ext}_A{i}(M,N/InN) \right) \le \rho_N(I) \cdot n - f \cdot \left\lfloor \frac{i}{2} \right\rfloor + b' \mbox{ for all } i, n \ge 0 $, where $ b $ and $ b' $ are some constants, $ f := \mathrm{min}{ \mathrm{deg}(z_j) : 1 \le j \le c } $, and $ \rho_N(I) $ is an invariant defined in terms of reduction ideals of $ I $ with respect to $ N $. There are explicit examples which show that these inequalities are sharp.

Summary

We haven't generated a summary for this paper yet.