Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of a micro-macro acceleration method with minimum relative entropy moment matching (1801.01740v1)

Published 5 Jan 2018 in math.NA

Abstract: We analyse convergence of a micro-macro acceleration method for the Monte Carlo simulation of stochastic differential equations with time-scale separation between the (fast) evolution of individual trajectories and the (slow) evolution of the macroscopic function of interest. We consider a class of methods, presented in [Debrabant, K., Samaey, G., Zieli\'nski, P. A micro-macro acceleration method for the Monte Carlo simulation of stochastic differential equations. SINUM, 55 (2017) no. 6, 2745-2786], that performs short bursts of path simulations, combined with the extrapolation of a few macroscopic state variables forward in time. After extrapolation, a new microscopic state is then constructed, consistent with the extrapolated variable and minimising the perturbation caused by the extrapolation. In the present paper, we study a specific method in which this perturbation is minimised in a relative entropy sense. We discuss why relative entropy is a useful metric, both from a theoretical and practical point of view, and rigorously study local errors and numerical stability of the resulting method as a function of the extrapolation time step and the number of macroscopic state variables. Using these results, we discuss convergence to the full microscopic dynamics, in the limit when the extrapolation time step tends to zero and the number of macroscopic state variables tends to infinity.

Summary

We haven't generated a summary for this paper yet.