Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Biderivations and commuting linear maps on Lie algebras (1801.01109v1)

Published 3 Jan 2018 in math.RA

Abstract: Let $L$ be a Lie algebra over a field of characteristic different from $2$. If $L$ is perfect and centerless, then every skew-symmetric biderivation $\delta:L\times L\to L$ is of the form $\delta(x,y)=\gamma([x,y])$ for all $x,y\in L$, where $\gamma\in{\rm Cent}(L)$, the centroid of $L$. Under a milder assumption that $[c,[L,L]]={0}$ implies $c=0$, every commuting linear map from $L$ to $L$ lies in ${\rm Cent}(L)$. These two results are special cases of our main theorems which concern biderivations and commuting linear maps having their ranges in an $L$-module. We provide a variety of examples, some of them showing the necessity of our assumptions and some of them showing that our results cover several results from the literature.

Summary

We haven't generated a summary for this paper yet.