Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Building Energy and Indoor Environment: A Perspective (1801.00779v1)

Published 31 Dec 2017 in cs.CY and cs.LG

Abstract: Machine learning is a promising technique for many practical applications. In this perspective, we illustrate the development and application for machine learning. It is indicated that the theories and applications of machine learning method in the field of energy conservation and indoor environment are not mature, due to the difficulty of the determination for model structure with better prediction. In order to significantly contribute to the problems, we utilize the ANN model to predict the indoor culturable fungi concentration, which achieves the better accuracy and convenience. The proposal of hybrid method is further expand the application fields of machine learning method. Further, ANN model based on HTS was successfully applied for the optimization of building energy system. We hope that this novel method could capture more attention from investigators via our introduction and perspective, due to its potential development with accuracy and reliability. However, its feasibility in other fields needs to be promoted further.

Citations (4)

Summary

We haven't generated a summary for this paper yet.