Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Attentive Sequence Model for Adverse Drug Event Extraction from Biomedical Text (1801.00625v1)

Published 2 Jan 2018 in cs.CL

Abstract: Adverse reaction caused by drugs is a potentially dangerous problem which may lead to mortality and morbidity in patients. Adverse Drug Event (ADE) extraction is a significant problem in biomedical research. We model ADE extraction as a Question-Answering problem and take inspiration from Machine Reading Comprehension (MRC) literature, to design our model. Our objective in designing such a model, is to exploit the local linguistic context in clinical text and enable intra-sequence interaction, in order to jointly learn to classify drug and disease entities, and to extract adverse reactions caused by a given drug. Our model makes use of a self-attention mechanism to facilitate intra-sequence interaction in a text sequence. This enables us to visualize and understand how the network makes use of the local and wider context for classification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (20)

Summary

We haven't generated a summary for this paper yet.