Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An approximation scheme for semilinear parabolic PDEs with convex and coercive Hamiltonians (1801.00583v3)

Published 2 Jan 2018 in math.OC, cs.NA, and math.NA

Abstract: We propose an approximation scheme for a class of semilinear parabolic equations that are convex and coercive in their gradients. Such equations arise often in pricing and portfolio management in incomplete markets and, more broadly, are directly connected to the representation of solutions to backward stochastic differential equations. The proposed scheme is based on splitting the equation in two parts, the first corresponding to a linear parabolic equation and the second to a Hamilton-Jacobi equation. The solutions of these two equations are approximated using, respectively, the Feynman-Kac and the Hopf-Lax formulae. We establish the convergence of the scheme and determine the convergence rate, combining Krylov's shaking coefficients technique and Barles-Jakobsen's optimal switching approximation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.