Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fair Adaptive Data Rate Algorithm for LoRaWAN (1801.00522v1)

Published 1 Jan 2018 in cs.NI

Abstract: LoRaWAN exhibits several characteristics that can lead to an unfair distribution of the Data Extracted Rate (DER) among nodes. Firstly, the capture effect leads to a strong signal suppressing a weaker signal at the gateway and secondly, the spreading codes used are not perfectly orthogonal, causing packet loss if an interfering signal is strong enough. In these conditions, nodes experiencing higher attenuation are less likely to see their packets received correctly. We develop FADR, a Fair Adaptive Data Rate algorithm for LoRaWAN that exploits the different Spreading Factors (SFs) and Transmission Powers (TPs) settings available in LoRa to achieve a fair Data Extraction Rate among all nodes while at the same time avoiding excessively high TPs. Simulations show that FADR, in highly congested cells, achieves 300% higher fairness than the minimum airtime allocation approach and 22% higher fairness than Brechts approach, while consuming almost 22% lower energy.

Citations (25)

Summary

We haven't generated a summary for this paper yet.