Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparative Analysis of Human Movement Prediction: Space Syntax and Inverse Reinforcement Learning (1801.00464v2)

Published 1 Jan 2018 in cs.MA

Abstract: Space syntax matrix has been the main approach for human movement prediction in the urban environment. An alternative, relatively new methodology is an agent-based pedestrian model constructed using machine learning techniques. Even though both approaches have been studied intensively, the quantitative comparison between them has not been conducted. In this paper, comparative analysis of space syntax metrics and maximum entropy inverse reinforcement learning (MEIRL) is performed. The experimental result on trajectory data of artificially generated pedestrian agents shows that MEIRL outperforms space syntax matrix. The possibilities for combining two methods are drawn out as conclusions, and the relative challenges with the data collection are highlighted.

Citations (4)

Summary

We haven't generated a summary for this paper yet.