Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis and Code Design for the Binary CEO Problem under Logarithmic Loss (1801.00435v1)

Published 1 Jan 2018 in cs.IT and math.IT

Abstract: In this paper, we propose an efficient coding scheme for the binary Chief Executive Officer (CEO) problem under logarithmic loss criterion. Courtade and Weissman obtained the exact rate-distortion bound for a two-link binary CEO problem under this criterion. We find the optimal test-channel model and its parameters for the encoder of each link by using the given bound. Furthermore, an efficient encoding scheme based on compound LDGM-LDPC codes is presented to achieve the theoretical rates. In the proposed encoding scheme, a binary quantizer using LDGM codes and a syndrome-decoding employing LDPC codes are applied. An iterative decoding is also presented as a fusion center to reconstruct the observation bits. The proposed decoder consists of a sum-product algorithm with a side information from other decoder and a soft estimator. The output of the CEO decoder is the probability of source bits conditional to the received sequences of both links. This method outperforms the majority-based estimation of the source bits utilized in the prior studies of the binary CEO problem. Our numerical examples verify a close performance of the proposed coding scheme to the theoretical bound in several cases.

Citations (13)

Summary

We haven't generated a summary for this paper yet.