Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating Node-Weighted k-MST on Planar Graphs (1801.00313v2)

Published 31 Dec 2017 in cs.DS

Abstract: We study the problem of finding a minimum weight connected subgraph spanning at least $k$ vertices on planar, node-weighted graphs. We give a $(4+\eps)$-approximation algorithm for this problem. We achieve this by utilizing the recent LMP primal-dual $3$-approximation for the node-weighted prize-collecting Steiner tree problem by Byrka et al (SWAT'16) and adopting an approach by Chudak et al. (Math.\ Prog.\ '04) regarding Lagrangian relaxation for the edge-weighted variant. In particular, we improve the procedure of picking additional vertices (tree merging procedure) given by Sadeghian (2013) by taking a constant number of recursive steps and utilizing the limited guessing procedure of Arora and Karakostas (Math.\ Prog.\ '06). More generally, our approach readily gives a $(\nicefrac{4}{3}\cdot r+\eps)$-approximation on any graph class where the algorithm of Byrka et al.\ for the prize-collecting version gives an $r$-approximation. We argue that this can be interpreted as a generalization of an analogous result by K\"onemann et al. (Algorithmica~'11) for partial cover problems. Together with a lower bound construction by Mestre (STACS'08) for partial cover this implies that our bound is essentially best possible among algorithms that utilize an LMP algorithm for the Lagrangian relaxation as a black box. In addition to that, we argue by a more involved lower bound construction that even using the LMP algorithm by Byrka et al.\ in a \emph{non-black-box} fashion could not beat the factor $\nicefrac{4}{3}\cdot r$ when the tree merging step relies only on the solutions output by the LMP algorithm.

Summary

We haven't generated a summary for this paper yet.