Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple solutions for superlinear fractional problems via theorems of mixed type (1712.10292v2)

Published 29 Dec 2017 in math.AP

Abstract: In this paper we investigate the existence of multiple solutions for the following two fractional problems \begin{equation*} \left{\begin{array}{ll} (-\Delta_{\Omega}){s} u-\lambda u= f(x, u) &\mbox{in} \Omega \ u=0 &\mbox{in} \partial \Omega \end{array} \right. \end{equation*} and \begin{equation*} \left{\begin{array}{ll} (-\Delta_{\mathbb{R}{N}}){s} u-\lambda u= f(x, u) &\mbox{in} \Omega \ u=0 &\mbox{in} \mathbb{R}{N}\setminus \Omega, \end{array} \right. \end{equation*} where $s\in (0,1)$, $N>2s$, $\Omega$ is a smooth bounded domain of $\mathbb{R}{N}$, and $f:\bar{\Omega}\times \mathbb{R}\rightarrow \mathbb{R}$ is a superlinear continuous function which does not satisfy the well-known Ambrosetti-Rabinowitz condition. Here $(-\Delta_{\Omega}){s}$ is the spectral Laplacian and $(-\Delta_{\mathbb{R}{N}}){s}$ is the fractional Laplacian in $\mathbb{R}{N}$. By applying variational theorems of mixed type due to Marino and Saccon and Linking Theorem, we prove the existence of multiple solutions for the above problems.

Summary

We haven't generated a summary for this paper yet.