Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing Riesz means of anisotropic harmonic oscillators (1712.10247v2)

Published 29 Dec 2017 in math.SP

Abstract: We consider problems related to the asymptotic minimization of eigenvalues of anisotropic harmonic oscillators in the plane. In particular we study Riesz means of the eigenvalues and the trace of the corresponding heat kernels. The eigenvalue minimization problem can be reformulated as a lattice point problem where one wishes to maximize the number of points of $(\mathbb{N}-\tfrac12)\times(\mathbb{N}-\tfrac12)$ inside triangles with vertices $(0, 0), (0, \lambda \sqrt{\beta})$ and $(\lambda/{\sqrt{\beta}}, 0)$ with respect to $\beta>0$, for fixed $\lambda\geq 0$. This lattice point formulation of the problem naturally leads to a family of generalized problems where one instead considers the shifted lattice $(\mathbb{N}+\sigma)\times(\mathbb{N}+\tau)$, for $\sigma, \tau >-1$. We show that the nature of these problems are rather different depending on the shift parameters, and in particular that the problem corresponding to harmonic oscillators, $\sigma=\tau=-\tfrac12$, is a critical case.

Summary

We haven't generated a summary for this paper yet.