Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a conjecture about a class of permutation trinomials (1712.10017v1)

Published 28 Dec 2017 in math.CO

Abstract: We prove a conjecture by Tu, Zeng, Li, and Helleseth concerning trinomials $f_{\alpha,\beta}(x)= x + \alpha x{q(q-1)+1} + \beta x{2(q-1)+1} \in \mathbb{F}{q2}[x]$, $\alpha\beta \neq 0$, $q$ even, characterizing all the pairs $(\alpha,\beta)\in \mathbb{F}{q2}2$ for which $f_{\alpha,\beta}(x)$ is a permutation of $\mathbb{F}_{q2}$.

Summary

We haven't generated a summary for this paper yet.