Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Gap-Based Framework for Chinese Word Segmentation via Very Deep Convolutional Networks (1712.09509v1)

Published 27 Dec 2017 in cs.CL

Abstract: Most previous approaches to Chinese word segmentation can be roughly classified into character-based and word-based methods. The former regards this task as a sequence-labeling problem, while the latter directly segments character sequence into words. However, if we consider segmenting a given sentence, the most intuitive idea is to predict whether to segment for each gap between two consecutive characters, which in comparison makes previous approaches seem too complex. Therefore, in this paper, we propose a gap-based framework to implement this intuitive idea. Moreover, very deep convolutional neural networks, namely, ResNets and DenseNets, are exploited in our experiments. Results show that our approach outperforms the best character-based and word-based methods on 5 benchmarks, without any further post-processing module (e.g. Conditional Random Fields) nor beam search.

Citations (7)

Summary

We haven't generated a summary for this paper yet.