Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fog Computing based SDI Framework for Mineral Resources Information Infrastructure Management in India (1712.09282v2)

Published 26 Dec 2017 in cs.DC

Abstract: Spatial Data Infrastructure (SDI) is an important concept for sharing spatial data across the web. With cumulative techniques with spatial cloud computing and fog computing, SDI has the greater potential and has been emerged as a tool for processing, analysis and transmission of spatial data. The Fog computing is a paradigm where Fog devices help to increase throughput and reduce latency at the edge of the client with respect to cloud computing environment. This paper proposed and developed a fog computing based SDI framework for mining analytics from spatial big data for mineral resources management in India. We built a prototype using Raspberry Pi, an embedded microprocessor. We validated by taking suitable case study of mineral resources management in India by doing preliminary analysis including overlay analysis. Results showed that fog computing hold a great promise for analysis of spatial data. We used open source GIS i.e. QGIS and QIS plugin for reducing the transmission to cloud from the fog node.

Citations (10)

Summary

We haven't generated a summary for this paper yet.