Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential geometry and stochastic dynamics with deep learning numerics (1712.08364v1)

Published 22 Dec 2017 in cs.CG and stat.CO

Abstract: In this paper, we demonstrate how deterministic and stochastic dynamics on manifolds, as well as differential geometric constructions can be implemented concisely and efficiently using modern computational frameworks that mix symbolic expressions with efficient numerical computations. In particular, we use the symbolic expression and automatic differentiation features of the python library Theano, originally developed for high-performance computations in deep learning. We show how various aspects of differential geometry and Lie group theory, connections, metrics, curvature, left/right invariance, geodesics and parallel transport can be formulated with Theano using the automatic computation of derivatives of any order. We will also show how symbolic stochastic integrators and concepts from non-linear statistics can be formulated and optimized with only a few lines of code. We will then give explicit examples on low-dimensional classical manifolds for visualization and demonstrate how this approach allows both a concise implementation and efficient scaling to high dimensional problems.

Citations (24)

Summary

We haven't generated a summary for this paper yet.