Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dataflow Matrix Machines and V-values: a Bridge between Programs and Neural Nets (1712.07447v2)

Published 20 Dec 2017 in cs.NE and cs.PL

Abstract: 1) Dataflow matrix machines (DMMs) generalize neural nets by replacing streams of numbers with linear streams (streams supporting linear combinations), allowing arbitrary input and output arities for activation functions, countable-sized networks with finite dynamically changeable active part capable of unbounded growth, and a very expressive self-referential mechanism. 2) DMMs are suitable for general-purpose programming, while retaining the key property of recurrent neural networks: programs are expressed via matrices of real numbers, and continuous changes to those matrices produce arbitrarily small variations in the associated programs. 3) Spaces of V-values (vector-like elements based on nested maps) are particularly useful, enabling DMMs with variadic activation functions and conveniently representing conventional data structures.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com