Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
37 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Revisiting the Master-Slave Architecture in Multi-Agent Deep Reinforcement Learning (1712.07305v1)

Published 20 Dec 2017 in cs.AI

Abstract: Many tasks in artificial intelligence require the collaboration of multiple agents. We exam deep reinforcement learning for multi-agent domains. Recent research efforts often take the form of two seemingly conflicting perspectives, the decentralized perspective, where each agent is supposed to have its own controller; and the centralized perspective, where one assumes there is a larger model controlling all agents. In this regard, we revisit the idea of the master-slave architecture by incorporating both perspectives within one framework. Such a hierarchical structure naturally leverages advantages from one another. The idea of combining both perspectives is intuitive and can be well motivated from many real world systems, however, out of a variety of possible realizations, we highlights three key ingredients, i.e. composed action representation, learnable communication and independent reasoning. With network designs to facilitate these explicitly, our proposal consistently outperforms latest competing methods both in synthetic experiments and when applied to challenging StarCraft micromanagement tasks.

Citations (45)

Summary

We haven't generated a summary for this paper yet.