Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Traces on ideals and the commutator property (1712.06702v1)

Published 18 Dec 2017 in math.FA

Abstract: We propose a new class of traces motivated by a trace/trace class property discovered by Laurie, Nordgren, Radjavi and Rosenthal concerning products of operators outside the trace class. Spectral traces, traces that depend only on the spectrum and algebraic multiplicities, possess this property and we suspect others do, but we know of no other traces that do. This paper is intended to be part survey. We provide here a brief overview of some facts concerning traces on ideals, especially involving Lidskii formulas and spectral traces. We pose the central question: whenever the relevant products, $AB$, $BA$ lie in an ideal, do bounded operators $A$, $B$ always commute under any trace on that ideal, i.e.,$\tau(AB) = \tau(BA)$? And if not, characterize which traces/ideals do possess this property.

Summary

We haven't generated a summary for this paper yet.