Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalising neural network (1712.06452v1)

Published 18 Dec 2017 in cs.CV

Abstract: Segmentation of the levator hiatus in ultrasound allows to extract biometrics which are of importance for pelvic floor disorder assessment. In this work, we present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a 2D image extracted from a 3D ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalising activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction and rest, all labelled by three operators, is used for training and evaluation in a leave-one-patient-out cross-validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams' index of 1.03), and outperforming a U-Net architecture without the need for batch normalisation. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semi-automatic approach.

Citations (28)

Summary

We haven't generated a summary for this paper yet.