Recollements from Cotorsion Pairs (1712.04781v2)
Abstract: Given a complete hereditary cotorsion pair $(\mathcal{A},\mathcal{B})$ in a Grothendieck category $\mathcal{G}$, the derived category $\mathcal{D}(\mathcal{B})$ of the exact category $\mathcal{B}$ is defined as the quotient of the category $\mathrm{Ch}(\mathcal{B})$, of unbounded complexes with terms in $\mathcal{B}$, modulo the subcategory $\widetilde{\mathcal{B}}$ consisting of the acyclic complexes with terms in $\mathcal{B}$ and cycles in $\mathcal{B}$. We restrict our attention to the cotorsion pairs such that $\widetilde{\mathcal{B}}$ coincides with the class $ex\mathcal{B}$ of the acyclic complexes of $\mathrm{Ch}(\mathcal{G})$ with terms in $\mathcal{B}$. In this case the derived category $\mathcal{D}(\mathcal{B})$ fits into a recollement $\dfrac{ex\mathcal{B}}{\sim} \mathrel{\substack{\textstyle\leftarrow\textstyle\rightarrow\textstyle\leftarrow}} {K(\mathcal{B})} \mathrel{\substack{\textstyle\leftarrow\textstyle\rightarrow\textstyle\leftarrow}} {\dfrac{\mathrm{Ch}(\mathcal{B})}{ex\mathcal{B} }}$. We will explore the conditions under which $\mathrm{ex}\,\mathcal{B}=\widetilde{\mathcal{B}}$ and provide many examples. Symmetrically, we prove analogous results for the exact category $\mathcal{A}$.