Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-normalized Cramer type moderate deviations for martingales (1712.04756v2)

Published 13 Dec 2017 in math.PR

Abstract: Let $(\xi_i,\mathcal{F}i){i\geq1}$ be a sequence of martingale differences. Set $S_n=\sum_{i=1}n\xi_i $ and $[ S]n=\sum{i=1}n \xi_i2.$ We prove a Cram\'er type moderate deviation expansion for $\mathbf{P}(S_n/\sqrt{[ S]_n} \geq x)$ as $n\to+\infty.$ Our results partly extend the earlier work of [Jing, Shao and Wang, 2003] for independent random variables.

Summary

We haven't generated a summary for this paper yet.